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Abstract The effect of exogenous oxidative stress on mycothiol
(MSH) levels and redox balance was investigated in mycobacte-
ria. Both the thiol-specific oxidant diamide and hydrogen perox-
ide induced up to 75% depletion of MSH to form the disulfide
form, mycothione (MSSM), in Mycobacterium bovis BCG. In
comparison,Mycobacterium smegmatis, a saprophytic mycobac-
terium, displays a greater tolerance towards these oxidants, re-
flected by the lack of fluxes in MSH levels and redox ratios
upon oxidative stress treatments. The basal ratio of MSH to
MSSM was established to be 50:1 in M. bovis BCG and 200:1
in M. smegmatis.
! 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Tuberculosis is the leading cause of mortality worldwide due
to a single infectious agent and is responsible for an estimated
3 million deaths and 8 million new cases of active disease per
year [1]. In the course of human disease, granulomas form
around the sites of infection in the lung, and typically evolve
to contain the bacilli in necrotizing regions that are low in
nutrients and high in concentrations of reactive oxygen inter-
mediates (ROIs), reactive nitrogen intermediates (RNIs) and
other toxins released by the infected and lysed macrophages,
which help inhibit the replication of the bacilli [2,3]. ROIs
are generated from O2, and these reduction products include
O!

2 , H2O2 (hydrogen peroxide), and OH!. The sensitivity of
mycobacteria to ROIs and RNIs in vitro, and the exacerbation
of disease in mice deficient in these defenses [4,5] illustrate the
importance of these intermediates in host defense against
mycobacteria.
Mycobacteria employ various strategies to ensure survival in

the toxic environment of the granuloma and within the acti-
vated macrophage. Such defenses include the ahpC, katG,
trxC, and pknH genes [6–9]. While these serve as effective, spe-
cific responses to specific dangers in the host cell, there is also a

need for effective, immediate, and universal responses to the
wide spectrum of threats a bacilli may encounter during its life
cycle. Low-molecular weight thiols serve such a role in all
known living organisms. They maintain cellular homeostasis
by ensuring a reducing environment in the cell, and also func-
tion as general-use detoxification agents against antibiotics,
alkylating agents, electrophiles, and other exogenous or endog-
enous reactive intermediates. In eukaryotes and gram-negative
bacteria, glutathione (GSH) is the major cellular thiol. In
mycobacteria, mycothiol (MSH) serves as the major systemic
protectant.
MSH (1DD-myo-inosityl 2-(N-acetyl-LL-cysteinyl) amido-2-

deoxy-a-DD-glucopyranoside), is the dominant low molecular-
weight thiol, reducing agent, and storage form of cysteine,
produced by mycobacteria and a number of other actinomycetes
[10]. Although functionally similar, MSH possesses a slightly
more complex biochemical structure than the GSH tripeptide
[11]. The MSH biosynthetic pathway is well conserved in gene
sequence and functionality among pathogenic and non-patho-
genic mycobacteria and has been well characterized [12–15].
The antioxidant properties of MSH are due to the presence

of the sulfur atom of the amino acid cysteine, functional only
in its reduced (–SH) form. MSH-dependent detoxification of
xenobiotics such as alkylating agents, electrophiles, and antibi-
otics, involves the formation of MSH S-conjugates (MS-R,
where R is the toxin) [16]. These S-conjugates are subsequently
cleaved by the amidase Mca (Rv1082), to result in GlcN-Ins
and the modified toxin AcCysR [17]. In addition, there is an
alternative route involving oxidation of MSH to mycothione
(or mycothiol disulfide, MSSM), which is known to be reduced
by a specific disulfide reductase, Mtr (Rv2855) in mycobacte-
ria.
In this study, we examined the role of MSH in mycobacterial

defense against two low molecular weight oxidative stressors,
diamide and H2O2. We have shown that both agents induce
depletion of MSH levels resulting in changes in the basal
MSH:MSSM redox balance.

2. Materials and methods

All Mycobacterium bovis BCG cultures were grown in Middlebrook
7H9 (MB 7H9) media (0.2% v/v glycerol, and 0.1% v/v Tween-80) sup-
plemented with 10% albumin-dextrose-saline (ADS) and incubated in
roller bottles at 37 "C until stationary phase.
Diamide is a small thiol-specific, non-toxic, rapidly acting oxidant

commonly used in thiol oxidation. About 5 mM diamide was added
in the absence of light to liquid culture immediately after sampling
the 0 time point and incubation was performed for the specified time
points, as previously described [18]. Oxidative stress was simulated
by addition of 10 mm H2O2 [19]. Cultures were incubated in the same
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manner as diamide-treated cultures. We tested the effects of stress
treatments in both bacteria grown in MB 7H9-ADS media and in bac-
teria resuspended in 0.9% normal saline, to rule out bacterial growth
and unknown effects of components in the growth media.
HPLC analysis of MSH levels was performed based on a previously

developed protocol [20]. To detect the presence of MSH oxidized as
MSSM, we modified the assay as follows: first, warm N-ethylmalei-
mide (dissolved in 50% acetonitrile/water and 20 mM HEPES, pH
8.0) is added to bind all thiol groups, followed by the addition of B-
mercaptoethanol. Finally, dithiothreitol is added to reduce all disulfide
bonds. The reduced MSH molecules are then reacted with excess
monobromobimane in a rapid one-to-one reaction to produce fluores-
cent MSmB, and then processed for HPLC analysis, as described pre-
viously [20].
Graphs and statistical analyses were made using GraphPad Prism v.

2.0 (GraphPad Software).

3. Results

3.1. Diamide treatment induces MSH oxidation
As shown in Fig. 1, M. bovis BCG cultures grown for up to

8 h have relatively constant levels of MSH, in the range of "17
to 25 nmol per 109 cells. MSSM levels are much lower, found
below 1 nmol per 109 bacteria regardless of whether untreated
bacteria were sampled from saline (Fig. 1) or growth media
(data not shown). Diamide-treated M. bovis BCG maintained
in 0.9% saline underwent up to 4-fold decrease in their MSH
levels after 1 h, and did not recover their basal MSH levels.
Accompanying the rapid drop in MSH levels, a significant in-
crease in MSSM levels, by at least 10-fold, was observed. The
MSSM levels did not return to their basal levels by the end of
the treatment. In contrast, upon treatment with diamide in

growth media, a slower rate of MSH depletion was observed,
with significant decreases in MSH levels at the 1 and 2 h time
points, followed by recovery and return to the initial MSH lev-
els towards the end of the treatment. As with the cultures in
0.9% saline, the initial depletion of MSH in growth media is
mirrored by an initial increase in MSSM. However, MSH lev-
els begin to bounce back by the 4 h time point, with a corre-
sponding decrease in MSSM levels. Nevertheless, by the end
of the experiment, after 8 h, the treated culture did not recover
completely and its MSH level remain about half of that of the
untreated culture.

3.2. H2O2 treatment induces MSH oxidation
As shown in Fig. 1, H2O2-treated M. bovis BCG suspended

in 0.9% saline also undergoes a decrease in its MSH levels,
however the decrease is limited to 2–3-fold throughout the
time points. As with the diamide-induced decrease in MSH lev-
els, we observed increases in MSSM levels. However, we did
not observe any differences in MSH or MSSM levels over
the 8 h period when M. bovis BCG grown in growth media
was exposed to H2O2.

3.3. MSH:MSSM redox ratios
As can be seen in Fig. 2, the basal redox ratio in M. bovis

BCG is "50:1. In M. bovis BCG treated with 5 mM diamide
in 0.9% saline solution, the redox ratio is significantly reduced
by "2 orders of magnitude by the first time point and does not
recover by the end of the treatment (P < 0.01 for all time
points). Treatment with 10 mM H2O2 in 0.9% saline also low-
ers the ratio significantly by "1 order of magnitude at the 4
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Fig. 1. MSH levels in M. bovis BCG upon diamide and H2O2 treatment. MSH (reduced form) in control (closed squares) and treatment (closed
triangles) cultures, and MSH (oxidized form) in control (open squares) and treatment (open triangles) cultures. Data are shown as means with the
associated SEMs. Unpaired two-tailed T-tests were performed using P = 0.05 as the threshold for statistical significance. * denotes P 6 0.05 and **

denotes P 6 0.01.

K.S.E. Ung, Y. Av-Gay / FEBS Letters 580 (2006) 2712–2716 2713



and 8 h time points (P < 0.01), but it seems to recover slightly
by the end of the 8 h treatment.
HPLC analyses of total reduced and oxidized MSH levels in

the non-virulent soil strain Mycobacterium smegmatis were
also performed for comparison with the vaccine strainM. bovis
BCG, as these species colonize different pathospheres and
might have evolved different responses to the various stresses.
We found that the total levels of reduced MSH in M. smegma-
tis in stationary phase in vitro are generally higher (ranging up
to 40 nmol per 109 cells) than those of M. bovis BCG (ranging
up to 25 nmol per 109 cells), while the levels of oxidized MSH
are much lower (usually less than 1 nmol per 109 cells) in both
species. The summary of the MSH:MS = SM redox ratios are
shown in Fig. 3. As can be seen, the basal redox ratio in M.
smegmatis is "200:1 and there were no statistically significant
changes in the calculated redox ratios upon any of the treat-
ments.

4. Discussion

Mycobacterial resistance to ROIs and RNIs is diverse both
in mechanism and species specificity. In Escherichia coli, expo-
sure to ROIs induces the redox-sensitive transcriptional regu-

lator OxyR, which in turn induces the production of various
enzymes to combat oxidative stress. The OxyR regulon in-
cludes oxyR itself, a glutaredoxin (grxA), a DNA-protective
nucleoprotein (dps), an alkylhydroperoxide reductase (ahpC),
a thioredoxin (trxC), and a catalase/peroxidase (katG), among
others [21–24]. In several species of mycobacteria, including
Mycobacterium tuberculosis, the oxyR gene is rendered non-
functional [25]. Regardless of this, mycobacteria are still able
to mount several varied, specific responses to both exogenous
and endogenous oxidative/nitrosative stresses via functional
ahpC and katG systems. For example, ahpC is induced in M.
smegmatis upon exposure to H2O2, but is not detectable by
immunological methods in M. tuberculosis H37Rv upon the
same stress treatment [26,27].
In this study we examined the fate of MSH upon exposure to

sub-lethal quantities of the thiol-specific oxidant diamide and
the ROI H2O2. We observed that exposure of M. bovis BCG,
in saline, induces massive depletion of MSH and parallel in-
crease in MSSM levels. The bacteria, when supplemented with
nutrients in the form of growth media instead of inert saline,
were able to overcome the toxic effect and restore, at least par-
tially, their MSH pool. MB 7H9, contains numerous com-
pounds which may chemically neutralize the oxidants.
Therefore, oleic acid-albumin-dextrose-catalase, the most com-
monly used mycobacterial growth supplement, was replaced
with ADS in our assays to eliminate the confounding effects
of catalase, but there may have been other components in
MB 7H9 medium which we did not account for (i.e. the oxi-
dants ammonium, magnesium, zinc, and copper sulfates).
However we favour the other possibility in which MSH levels
may also be influenced by the organism’s ability to transcribe
new copies of mtr (the gene encoding mycothiol disulfide
reductase), and other genes, whose transcription could be
attenuated under static conditions [28]. Alternatively, other
mycobacterial defense mechanisms such as katG, sodA/C,
and the thioredoxins, may also have reduced activities while
under stasis/starvation in the saline medium.
Redox balances reflect the organism’s ability to withstand

fluctuations due to reactive stressors. In E. coli (and eukary-
otes) the GSH:glutathione-disulfide ratios of "100:1 enables
buffer capacity and a wide zone of response to changes in re-
dox potential [29]. Since actinomycetes, including mycobacte-
ria, do not contain GSH, MSH:MSSM levels serve as the
redox ratio indicator. A recent study demonstrated that the ba-
sal redox state of M. smegmatis ranged from 200:1 to 1000:1
[30]. In this study, we monitored and observed differences in
the redox ratios between the saprophyte M. smegmatis
(200:1) and M. bovis BCG (50:1). In addition, the extent to
which redox balances are altered upon oxidative stress are of
significant difference between these two mycobacterial species.
Upon treatment with H2O2 and diamide, the redox ratios in
M. smegmatis were unaltered. In contrast, for M. bovis BCG
in 0.9% saline, there was a rapid drop in the redox ratios of
up to two orders of magnitude. The robustness of the M.
smegmatis response may be explained by the fact that M.
smegmatis has a higher cellular level of reduced MSH com-
pared to M. bovis BCG [10], and thus is resistant to the
amounts of oxidative and nitrosative stress we used in our as-
says. Present in soil, M. smegmatis is in an environment com-
posed of various stressors generated by other soil bacteria and
fungi, as well as heavy metals and other pollutants. Survival
under exposure to these toxins requires a robust, quick detox-
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Fig. 2. Redox ratios of M. bovis BCG upon exposure to oxidative
stressors. Control (closed squares), 5 mM diamide-treated (closed
triangles), and 10 mM H2O2-treated (closed circles) cultures in 0.9%
saline. Data are shown as means with the associated SEMs. Unpaired
two-tailed T-tests were performed using P = 0.05 as the threshold for
statistical significance. * denotes P 6 0.05 and ** denotes P 6 0.01.
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Fig. 3. Redox ratios of M. smegmatis mc2155 upon exposure to
oxidative stressors. Control (closed squares), 5 mM diamide-treated
(closed triangles), and 10 mM H2O2-treated (closed circles) cultures in
0.9% saline.
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ification system such as MSH provides. Indeed, some MSH-
producing soil-dwelling actinomycetes such as Rhodococcus
are currently being employed for bioremediation of pollutants
such as diesel oil. In contrast,M. tuberculosis, and by extension
M. bovis BCG, face a far different environment in the human
host, which is not a ‘‘toxic’’ environment per se. The thiol sys-
temic protectant for detoxification is perhaps superceded by
other mechanisms that are specific to survival inside phago-
cytes, such as mechanisms to inhibit phagosome–lysosome fu-
sion and the host inflammatory response. Another possibility
is that having evolved as an environmental saprophyte, M.
smegmatis has developed alternate systems of defense against
oxidative and nitrosative stressors, such as the aforementioned
ahpC system which may have more significant roles than MSH
in protecting this organism against these specific toxins.
The recovery of MSH levels in BCG, which is mirrored by a

decrease in oxidized MSH levels, indicates that Mtr is not com-
pletely saturated in this system. This suggests a direct relation-
ship where H2O2 and diamide are direct oxidants that mediate
the depletion of reduced form MSH to the oxidized form
MSSM. This phenomenon is in addition to the known indirect
relationship between ROIs and MSH, where oxidatively dam-
aged molecules/proteins can be detoxified by MSH via the for-
mation of S-conjugates. Thus, MSH has a unique role as a
systemic protectant in mycobacteria, utilizing two alternative
yet complementary mechanisms in detoxification of xenobiot-
ics: (1) detoxification of antibiotics via the S-conjugates path-
way, and (2) the direct interaction of low molecular weight
compounds, such as H2O2 and diamide, with MSH, affecting
the redox balance of the organism. As such, MSH metabolic
pathways are ideal targets for developing anti-infectives. Inac-
tivation of MSH biosynthesis will enable synergistic effects
with innate and adaptive immunity, and the use of current
antibiotics.
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